
Tropical cryptography III: digital signatures

Jiale Chen1, Dima Grigoriev2, and Vladimir Shpilrain3

1 Department of Mathematics, The City College of New York, New York, NY 10031
jchen056@citymail.cuny.edu

2 CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d'Ascq, France
Dmitry.Grigoryev@univ-lille.fr

3 Department of Mathematics, The City College of New York, New York, NY 10031
shpilrain@yahoo.com

Abstract. We use tropical algebras as platforms for a very e�cient
digital signature protocol. Security relies on computational hardness of
factoring one-variable tropical polynomials; this problem is known to be
NP-hard. We also o�er countermeasures against recent attacks by Panny
and by Brown and Monico.

Keywords: tropical algebra, digital signature, factoring polynomials

1 Introduction

In [6], [7], we employed tropical algebras as platforms for cryptographic schemes
by mimicking some well-known classical schemes, as well as newer schemes like
[8], [9], in the �tropical" setting. What it means is that we replaced the usual
operations of addition and multiplication by the operations min(x, y) and x+ y,
respectively.

An obvious advantage of using tropical algebras as platforms is unparalleled
e�ciency because in tropical schemes, one does not have to perform any mul-
tiplications of numbers since tropical multiplication is the usual addition, see
Section 2. On the other hand, �tropical powers" of an element may exhibit some
patterns, even if such an element is a matrix over a tropical algebra. This weak-
ness was exploited in [11] to arrange a fairly successful attack on one of the
schemes in [6].

In this paper, we o�er a digital signature scheme that uses tropical algebra
of one-variable polynomials. Security of the public key in this scheme is based
on computational hardness of factoring one-variable tropical polynomials. This
problem is known to be NP-hard, see [10].

Since the �rst version [3] of our paper was put online in September 2023,
Panny [12] and Brown and Monico [1] o�ered several forgery attacks on our
scheme. Brown and Monico also o�ered easy patches against both Panny's at-
tacks but mentioned that they had not found any way to prevent one forgery
attack of their own.

In this updated version of our original preprint [3], we take into account sug-
gestions of Brown and Monico (both from [1] and from informal communication)

2 Chen, Grigoriev, Shpilrain

to thwart all these attacks, although to avoid the attack in Section 4.6 of [1], we
had to modify our scheme in a more substantial way, see Section 8.

Finally, we note that in [5], the authors o�ered an interactive version, in
the spirit of Fiat-Shamir [4], of our protocol in [3]. This tool typically adds an
extra level of security to any ZKP protocol. However, we prefer to stick to a
non-interactive version here.

2 Preliminaries

We start by giving some necessary information on tropical algebras here; for
more details, we refer the reader to the monograph [2].

Consider a tropical semiring S, also known as the min-plus algebra due to
the following de�nition. This semiring is de�ned as a linearly ordered set (e.g., a
subset of reals) that contains 0 and is closed under addition, with two operations
as follows:

x⊕ y = min(x, y)

x⊗ y = x+ y.

It is straightforward to see that these operations satisfy the following prop-
erties:

associativity:
x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊗ (y ⊗ z) = (x⊗ y)⊗ z.

commutativity:
x⊕ y = y ⊕ x
x⊗ y = y ⊗ x.

distributivity:
(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

There are some �counterintuitive" properties as well:

x⊕ x = x

x⊗ 0 = x

x⊕ 0 could be either 0 or x.

There is also a special �ϵ-element" ϵ = ∞ such that, for any x ∈ S,

ϵ⊕ x = x

ϵ⊗ x = ϵ.

Tropical cryptography III: digital signatures 3

2.1 Tropical polynomials

A (tropical) monomial in S looks like a usual linear function, and a tropical
polynomial is the minimum of a �nite number of such functions, and therefore
a concave, piecewise linear function. The rules for the order in which tropical
operations are performed are the same as in the classical case, see the example
below. Still, we often use parenthesis to make a tropical polynomial easier to
read.

Example 1. Here is an example of a tropical monomial: x⊗ x⊗ y ⊗ z ⊗ z. The
(tropical) degree of this monomial is 5. We note that sometimes, people use the
alternative notation x⊗2 for x⊗ x, etc.

An example of a tropical polynomial is: p(x, y, z) = 5⊗x⊗y⊗z⊕x⊗x⊕2⊗
z⊕ 17 = (5⊗ x⊗ y⊗ z)⊕ (x⊗ x)⊕ (2⊗ z)⊕ 17. This polynomial has (tropical)
degree 3, by the highest degree of its monomials.

We note that, just as in the classical case, a tropical polynomial is canoni-
cally represented by an ordered set of tropical monomials (together with �nite
coe�cients), where the order that we use here is deglex.

We also note that some tropical polynomials may look �weird":

Example 2. Consider the polynomial p(x) = (0⊗x)⊕ (0⊗x⊗x). All coe�cients
in this polynomial are 0, and yet it is not the same as the polynomial q(x) = 0.

Indeed, q(x) ⊗ r(x) = r(x) for any polynomial r(x). On the other hand, if,
say, r(x) = 2⊗ x, then p(x)⊗ r(x) = (2⊗ x⊗ x)⊕ (2⊗ x⊗ x⊗ x) ̸= r(x).

In the following example, we show in detail how two tropical polynomials are
multiplied and how similar terms are collected.

Example 3. Let p(x) = (2 ⊗ x) ⊕ (3 ⊗ x ⊗ x) and q(x) = 5 ⊕ (1 ⊗ x). Then
p(x)⊗q(x) = [(2⊗x)⊗5]⊕[(2⊗x)⊗(1⊗x)]⊕[(3⊗x⊗x)⊗5]⊕[(3⊗x⊗x)⊗(1⊗x)] =
(7⊗x)⊕(3⊗x⊗x)⊕(8⊗x⊗x)⊕(4⊗x⊗x⊗x) = (7⊗x)⊕(3⊗x⊗x)⊕(4⊗x⊗x⊗x).

In this paper, our focus is on one-variable tropical polynomials, although one
can use multivariate tropical polynomials instead.

3 Digital signature scheme description

Let T be the tropical algebra of one-variable polynomials over Z, the ring of
integers.
The signature scheme is as follows.

Private: two polynomials X,Y ∈ T whose degrees sum up to 2d, with all
coe�cients in the range [0, r], where d and r are parameters of the scheme.

Public:
� polynomial M = X ⊗ Y

4 Chen, Grigoriev, Shpilrain

� a hash function H (e.g., SHA-512) and a (deterministic) procedure for con-
verting values of H to one-variable polynomials from the tropical algebra T (see
Section 4.2).

Signing a message m:

S1. Apply a hash function H to m. Convert H(m) to a polynomial P of degree
d from the algebra T using a deterministic public procedure.

S2. Select two random private polynomials U, V ∈ T such that deg(U) = deg(Y),
deg(V) = deg(X), with all coe�cients of U and V in the range [0, r]. Denote
N = U ⊗ V .

S3. The signature is the 4-tuple of polynomials (P, P ⊗X ⊗U, P ⊗Y ⊗V, N).

Veri�cation:

V1. The veri�er computes the hash H(m) and converts H(m) to a polynomial P
of degree d from the algebra T using a deterministic public procedure. This
is done to verify that P is the correct hash of the message.

V2. The veri�er checks that the degrees of the polynomials P ⊗ X ⊗ U and
P ⊗ Y ⊗ V (the second and third polynomials in the signature) are both
equal to 3d, and the degree of the polynomial N is equal to 2d. If not, then
the signature is not accepted.

V3. The veri�er checks that neither P ⊗ X ⊗ U nor P ⊗ Y ⊗ V is a constant
multiple (in the tropical sense) of P ⊗M or P ⊗N . If it is, then the signature
is not accepted.

V4. The veri�er checks that all coe�cients in the polynomials P ⊗ X ⊗ U and
P ⊗ Y ⊗ V are in the range [0, 3r], and all coe�cients in the polynomial N
are in the range [0, 2r]. If not, then the signature is not accepted.

V5. The veri�er computes W = (P ⊗X ⊗ U) ⊗ (P ⊗ Y ⊗ V). The signature is
accepted if and only if W = P ⊗ P ⊗M ⊗N .

Correctness is obvious since W = (P ⊗X⊗U)⊗ (P ⊗Y ⊗V) = P ⊗P ⊗ (X⊗
Y)⊗ (U ⊗ V) = P ⊗ P ⊗M ⊗N .

Remark 1. Step V2 in the veri�cation algorithm is needed to prevent trivial
forgery, e.g. signing by the triple of polynomials (P ⊗M, P ⊗N, N), in which
case (P ⊗M)⊗ (P ⊗N) = P ⊗ P ⊗M ⊗N .

Remark 2. Here is how one can check whether or not one given tropical polyno-
mial, call it R(x), is a constant multiple (in the tropical sense) of another given
tropical polynomial (of the same degree), call it S(x).

Let ri ∈ Z denote the coe�cient at the monomial x⊗i in R(x), and si ∈ Z
denote the coe�cient at the monomial x⊗i in S(x). If R(x) = c⊗ S(x) for some
c ∈ Z, then ri = si + c for every i. Here �+" means the �classical" addition in Z.

Therefore, to check if R(x) is a constant multiple of S(x), one checks if (ri−si)
is the same integer for every i.

Tropical cryptography III: digital signatures 5

4 Key generation and suggested parameters

The suggested value of d is 150.
The degree of the polynomial X is selected uniformly at random from in-

tegers in the interval [34d,
5
4d]. The degrees of other private polynomials are

then determined from the conditions deg(X) + deg(Y) = 2d, deg(V) = deg(X),
deg(U) = deg(Y).

All coe�cients of monomials in the polynomials X,Y, U, V are selected uni-
formly at random from integers in the range [0, r], where r = 127. We emphasize
that, in contrast with the �classical" case, if the coe�cient at a monomial is 0,
this does not mean that this monomial is �absent" from the polynomial.

4.1 Safe keys

Similar to the situation with the RSA modulus n = pq where the private primes
p and q should be �safe primes" (i.e., p−1 and q−1 should not have small divisors
other than 2), in our situation the private polynomialsX,Y, U, V should not have
any non-constant divisors (in the tropical sense). Otherwise, the forgery attack
from [12] may apply.

It is not immediately clear how to e�ciently generate irreducible tropical
polynomials of a given degree. One simple way to do this with high probability
is zeroing the �rst and last coe�cients of X and Y . There is an argument in
[10] suggesting that a generic polynomial whose �rst and last coe�cients are 0
is irreducible.

However, in contrast with the classical situation, even if X and Y are irre-
ducible tropical polynomials, this does not necessarily imply that the only factors
of M = X⊗Y are X and Y , although with high probability M will not have any
factors of low degree if the degrees of both X and Y are high. This will make a
brute force factorization of M computationally hard.

In any case, questions related to factoring one-variable tropical polynomials
need to be explored more to provide for a reliable way of generating safe keys
for our scheme.

4.2 Converting H(m) to a tropical polynomial over Z

We suggest using a hash functions from the SHA-3 family, speci�cally SHA3-512.
We assume the security properties of SHA3-512, including collision resistance
and preimage resistance. We also assume that there is a standard way to convert
H(m) to a bit string of length 512. Then a bit string can be converted to a
tropical polynomial P = P (x) over Z using the following ad hoc (deterministic)
procedure.

Let B = H(m) be a bit string of length 512. We will convert B to a one-
variable tropical polynomial P of degree d = 150 over Z. We therefore have to
select 151 coe�cients for monomials in P , and we want to have these coe�cients
in the range [0, 127]. With 7 bits for each coe�cient, we need 151 · 7 = 1057 bits
in total.

6 Chen, Grigoriev, Shpilrain

(1) Concatenate 3 copies of the bit string B to get a bit string of length 1536.

(2) Going left to right, convert 7-bit block #j to an integer and use it as the
coe�cient at the monomial x⊗j .

(3) After we use 7 · 151 = 1057 bits, all monomials in the polynomial P = P (x)
will get a coe�cient.

4.3 Multiplying two tropical polynomials

Let R(x) and S(x) be two one-variable tropical polynomials of degree d and g,
respectively. We want to compute R(x)⊗ S(x).

Note that a one-variable tropical monomial, together with a coe�cient, can
be represented by a pair of integers (k, l), where k is the coe�cient and l is the
degree. Our goal is therefore to compute the coe�cient at every monomial of
degree from 0 to d+ g in the product R(x)⊗ S(x).

Suppose we want to compute the coe�cient at the monomial of degreem, 0 ≤
m ≤ d+ g. Then we go over all coe�cients ri at the monomials of degrees i ≤ m
in the polynomial R(x) and add (in the �classical" sense) ri to sj , where sj is
the coe�cient at the monomial of degree j = m− i in the polynomial S(x).

Having computed all such sums ri + sj , we �nd the minimum among them,
and this is the coe�cient at the monomial of degree m in the polynomial R(x)⊗
S(x).

5 What is the hard problem here?

The (computationally) hard problem that we employ in our construction is fac-
toring one-variable tropical polynomials. This problem is known to be NP-hard,
see [10].

Since recovering the private tropical polynomials X and Y from the public

polynomial M = X ⊗ Y is exactly the factoring problem, we see that inverting

our candidate one-way function f(X,Y) = X ⊗ Y is NP-hard.

However, the private tropical polynomials X and Y are involved also in the
signature. For example, from the polynomial W = P ⊗X⊗U the adversary can
recover X⊗U because the polynomial P is public. The polynomial U is private,
so it looks like the adversary is still facing the factoring problem. However, the
adversary now knows two products involving the polynomial X, namely X ⊗ Y
and X ⊗ U . Therefore, we have a somewhat di�erent problem here: �nding a
common divisor of two given polynomials.

This problem is easy for �classical" one-variable polynomials over Z. In par-
ticular, any classical one-variable polynomial over Z has a unique factorization
(up to constant multiples) as a product of irreducible polynomials. In contrast,
a one-variable tropical polynomial can have an exponential number of incompa-
rable factorizations [10]. Furthermore, it was shown in [10] that two one-variable
tropical polynomials may not have a unique g.c.d. All this makes it appear likely
that the problem of �nding the g.c.d. of two (or more) given one-variable tropical

Tropical cryptography III: digital signatures 7

polynomials is computationally hard. No polynomial-time algorithm for solving
this problem is known. More about this in Section 6.

6 Possible attacks

The most straightforward attack is trying to factor the tropical polynomial M =
X ⊗ Y as a product of two tropical polynomials X and Y . As we have pointed
out before, this problem is known to be NP-hard [10]. In our situation, there
is an additional restriction on the degrees of X and Y , to pass Step V2 of the
veri�cation procedure.

If one reduces the equation M = X⊗Y to a system of equations in the coe�-
cients of X and Y , then one gets a system of 2d+1 quadratic (tropical) equations
in 2(d + 1) unknowns. With d large enough, such a system is unapproachable;
in fact, solving a system of quadratic tropical equations is known to be NP-
hard [14]. The size of the key space for X and Y with suggested parameters is
128300 = 22100, so the brute force search is infeasible.

It is unclear whether accumulating (from di�erent signatures) many tropical
polynomials of the form Mi = X⊗Ui, with di�erent (still unknown) polynomials
Ui can help recover X. With each new Mi, the attacker gets (on average) d+ 1
new unknowns (these are coe�cients of Ui) and 2d+ 1 new equations. There is
a well-known trick of reducing a system of quadratic equations to a system of
linear equations by replacing each product of two unknowns by a new unknown.
However, the number of pairs of unknowns increases roughly by d2 with each
new Ui. Therefore, a system of linear equations like that will be grossly un-
derdetermined, resulting in a huge number of solutions for the new unknowns,
thus making solving the original system (in the old unknowns) hard, especially
given the restrictions on the old unknowns tacitly imposed by Step V4 of the
veri�cation procedure.

As we have mentioned in the Introduction, Panny [12] and Brown and Mon-
ico [1] o�ered several forgery attacks on the original version [3] of our scheme.
The only serious attack of those is the factorization attack from Section 4.6 of
[1], which prompted us to make some changes not only in the key generation
procedure but also in the scheme itself, see our Section 8.

7 Performance and signature size

For our computer simulations, we used Apple MacBook Pro, M1 CPU (8 Cores),
16 GB RAM computer. Python code implementing the original version of the
scheme [3] is available, see [13].

We note that a one-variable tropical monomial, together with a coe�cient,
can be represented by a pair of integers (k, l), where k is the coe�cient and l is the
degree of the monomial. Then a one-variable tropical polynomial of degree, say,
150 is represented by 151 such pairs of integers, by the number of monomials. If k
is selected uniformly at random from integers in the range [0, 127], then the size of
such a representation is about 2000 bits on average. Indeed, 151 coe�cient of the

8 Chen, Grigoriev, Shpilrain

average size of 6 bits give about 900 bits. Then, the degrees of the monomials are
integers from 0 to 150. These take up (

∑7
k=1 k ·(2k−2k−1+1))+8 ·(150−127) ≈

1000 bits. Thus, it takes about 2000 bits on average to represent a single tropical
polynomial with suggested parameters.

Since a private key is comprised of two such polynomials, this means that
the size of the (long-term) private key in our scheme is about 4000 bits (or 500
bytes) on average.

The public key is a polynomial of degree 300. Coe�cients in this polynomial
are in the range [0, 254]. Using the same argument as in the previous paragraph,
we estimate the size of such polynomial to be about 4500 bits (or 562 bytes) on
average.

The signature is a 4-tuple of polynomials, one of them has degree 150, two
of them have degree 450, and one has degree 300. Therefore, the signature size
is about 16,000 bits (or 2000 bytes) on average.

In the table below, we have summarized performance data for several pa-
rameter sets, in the case where all private polynomials X,Y, U, V have the same
degree. Most columns are self-explanatory; the last two columns show memory
usage during veri�cation and during the whole process of signing and veri�cation.

Performance metrics for various parameter values
degree of
private
polyno-
mials

range for
coe�-
cients in
private
polyno-
mials

veri�cation
time (sec)

signature
size
(Kbytes)

public
key size
(Kbytes)

private
key size
(Kbytes)

memory
usage,
veri�-
cation
(Mbytes)

memory
usage,
whole
process
(Mbytes)

100 [0,127] <0.1 1.3 0.37 0.33 0.4 0.4
150 [0,127] 0.15 2 0.56 0.5 0.37 0.5
200 [0,127] 0.25 2.6 0.74 0.67 0.47 0.6

8 Alternative signature scheme

To completely avoid the division attack in Section 4.6 of [1], we o�er here a similar
but di�erent signature scheme where tropical addition plays a more prominent
role.

The private and public keys are the same as in the scheme in our Section
3. The only di�erence is that here the hash H(m) is converted to a tropical
polynomial of degree 2d, not d.

Signing a message m:

S′1. Apply a hash function H to m. Convert H(m) to a polynomial P of degree
d from the tropical algebra T using a deterministic public procedure.

Tropical cryptography III: digital signatures 9

S′2. Select two random private polynomials U, V ∈ T such that deg(U) = deg(Y),
deg(V) = deg(X), with all coe�cients of U and V in the range [0, r]. Denote
N = U ⊗ V .

S′3. Select a random public polynomial E of degree 3d, with all coe�cients in
the range [0, 3r].

S′4. The signature is the following 6-tuple of polynomials:
(P, P ⊕ (X ⊗ U), P ⊕ (Y ⊗ V), P ⊗ [(X ⊗ U)⊕ (Y ⊗ V)]⊕ E, N, E).

Veri�cation:

V ′1. The veri�er computes the hash H(m) and converts H(m) to a polynomial
P of degree 2d from the algebra T using a deterministic public procedure.
This is done to verify that P is the correct hash of the message.

V ′2. The veri�er checks that the degrees of the polynomials P ⊕ (X ⊗ U) and
P ⊕ (Y ⊗ V) (the second and third polynomials in the signature) are both
equal to 2d, the degree of the polynomial N is equal to 2d as well, and the
degrees of the remaining two polynomials are equal to 3d. If not, then the
signature is not accepted.

V ′3. The veri�er checks that all coe�cients in the polynomials P ⊕ (X ⊗U) and
P⊕(Y ⊗V) are in the range [0, 2r], all coe�cients in the polynomial N are in
the range [0, 2r] as well, and all coe�cients in the remaining two polynomials
are in the range [0, 3r]. If not, then the signature is not accepted.

V ′4. The veri�er checks that neither P ⊕ (X ⊗U) nor P ⊕ (Y ⊗ V) is a constant
multiple (in the tropical sense) of P ⊕M or P ⊕N . If it is, then the signature
is not accepted.

V ′5. Denote R = P ⊗ [(X ⊗ U)⊕ (Y ⊗ V)]. The veri�er checks that
P ⊗ [(P ⊕ (X ⊗ U))⊕ (P ⊕ (Y ⊗ V))]⊕ E = (P ⊗ P)⊕ (R⊕ E).
If not, then the signature is not accepted.

V ′6. The veri�er computes W = (P ⊕ (X ⊗ U)) ⊗ (P ⊕ (Y ⊗ V)) = (P ⊗ P) ⊕
(P ⊗ [(X ⊗U)⊕ (Y ⊗ V)])⊕ (X ⊗U ⊗ Y ⊗ V). The signature is accepted if
and only if W ⊕ E = (P ⊗ P)⊕ (R⊕ E)⊕ (M ⊗N).

Correctness follows from W ⊕ E = (P ⊗ P) ⊕ (P ⊗ [(X ⊗ U) ⊕ (Y ⊗ V)]) ⊕
(X ⊗ U ⊗ Y ⊗ V)⊕ E = (P ⊗ P)⊕ (R⊕ E)⊕ (M ⊗N).

8.1 Key generation

Key generation here follows Section 4, except that the hash H(m) should now
be converted to a tropical polynomial of degree 2d, not d. A simple way to do
the latter is just to tropically multiply a polynomial of degree d constructed as
in Section 4.2, by itself.

10 Chen, Grigoriev, Shpilrain

8.2 Brown-Monico attack

The attack in Section 4.6 of [1] is based on (tropically) dividing a public poly-
nomial by another public polynomial. The result of such division is not unique,
but it recovers the correct ratio with non-negligible probability.

Introducing tropical addition in the signature is intended as a countermeasure
to this attack. Recovering B from (A ⊕ B) and A is highly non-unique, so the
probability of correctly recovering, say, (X⊗U) or (Y ⊗V) from the polynomials
in the signature has a lesser chance of being non-negligible.

8.3 Performance and signature size

Speed of computation is not really di�erent here from what it is for the scheme
in Section 3, see the table in Section 7.

The signature size though is about 50% larger, so with d = 150, r = 127 it is
about 3 Kbytes.

9 Conclusions

• We propose two digital signature schemes whose security is based on an NP-
hard problem not previously employed in cryptography. This continues our line
of research on possible use of min-plus semirings as platforms for cryptographic
primitives.

• A particular NP-hard problem that we employ in this paper is factoring (one-
variable) tropical polynomials.

• Computation in our schemes is very e�cient, which is characteristic to cryp-
tographic schemes based on min-plus semirings. The signature size is not par-
ticularly small though.

• Panny [12] and Brown and Monico [1] o�ered heuristic forgery attacks on our
�rst scheme, which motivated us to come up with the second scheme to thwart
all these and similar attacks.

Acknowledgement.We are grateful to Dan Brown and Chris Monico for point-
ing out a couple of weaknesses in the original version of our scheme and for
discussions/suggestions on safe keys.

References

1. D. R. L. Brown, C. Monico, More forging (and patching) of tropical signatures,
https://eprint.iacr.org/2023/1837

2. P. Butkovic, Max-linear systems: theory and algorithms, Springer-Verlag Lon-
don, 2010.

3. J. Chen, D. Grigoriev and V. Shpilrain, Tropical cryptography III: digital signa-
tures, https://eprint.iacr.org/archive/versions/2023/1475

https://eprint.iacr.org/2023/1837
https://eprint.iacr.org/archive/versions/2023/1475

Tropical cryptography III: digital signatures 11

4. A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identi-
�cation and signature problems, in: Proceedings on Advances in Cryptology �
CRYPTO'86, pp. 186�194, Springer 1987.

5. R. Géraud-Stewart, D. Naccache, O. Yifrach-Stav, Fiat-Shamir goes tropical,
https://eprint.iacr.org/2023/1954

6. D. Grigoriev, V. Shpilrain, Tropical cryptography, Comm. Algebra. 42 (2014),
2624�2632.

7. D. Grigoriev and V. Shpilrain, Tropical cryptography II: extensions by homo-
morphisms, Comm. Algebra. 47 (2019), 4224�4229.

8. M. Habeeb, D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using
semidirect product of (semi)groups, in: ACNS 2013, Lecture Notes Comp. Sc.
7954 (2013), 475�486.

9. D. Kahrobaei, V. Shpilrain, Using semidirect product of (semi)groups in public
key cryptography, in: CiE 2016, Lecture Notes Comp. Sc. 9709 (2016), 132�141.

10. K. H. Kim, F. W. Roush, Factorization of polynomials in one variable over the
tropical semiring, https://arxiv.org/pdf/math/0501167.pdf

11. M. Kotov, A. Ushakov, Analysis of a key exchange protocol based on tropical
matrix algebra, J. Math. Cryptology 12 (2018), 137�141.

12. L. Panny, Forging tropical signatures, https://eprint.iacr.org/2023/1748
13. Python code for the tropical digital signature scheme, https://shpilrain.

ccny.cuny.edu/tropicalDS.txt

14. T. Theobald, On the frontiers of polynomial computations in tropical geometry,
J. Symbolic Comput. 41 (2006), 1360�1375.

https://eprint.iacr.org/2023/1954
https://arxiv.org/pdf/math/0501167.pdf
https://eprint.iacr.org/2023/1748
https://shpilrain.ccny.cuny.edu/tropicalDS.txt
https://shpilrain.ccny.cuny.edu/tropicalDS.txt

	Tropical cryptography III: digital signatures

